Shape and geometrical parameter effects of a bimorph piezoelectric beam on energy harvesting performance
Authors
Abstract:
In this paper, the shape influence of piezoelectric beams including triangle, trapezoid, rectangle, inverted trapezoid, convex parabola, concave parabola, and comb-shaped (a combination of two triangular beams with a connector of 4 mm length) are addressed and analyzed by FEM. The analysis is performed for a bimorph piezoelectric beam. The analyzed parameters include the beam length, thickness and width of the piezoelectric layer. The study is performed using COMSOL Multiphysics software for all seven shapes. The results show that due to the mechanical properties of the beams, the natural frequency of the triangular beam is more for all considered parameters. In addition, as the width of the beam end increases, the natural frequency reduces, too. Since natural frequency is inversely related to electric power, the inverted trapezoidal beam has the highest electric power and the triangular beam has the lowest one.
similar resources
A periodic folded piezoelectric beam for efficient vibration energy harvesting
Periodic piezoelectric beams have been used for broadband vibration energy harvesting in recent years. In this paper, a periodic folded piezoelectric beam (PFPB) is introduced. The PFPB has special features that distinguish it from other periodic piezoelectric beams. The Adomian decomposition method (ADM) is used to calculate the first two band gaps andtwelve natural frequencies of the PF...
full textthe effects of planning on accuracy and complexity of iranian efl students’ written narrative task performance
this study compared the different effects of form-focused guided planning vs. meaning-focused guided planning on iranian pre-intermediate students’ task performance. the study lasted for three weeks and concentrated on eight english structures. forty five pre-intermediate iranian students were randomly assigned to three groups of guided planning focus-on-form group (gpfg), guided planning focus...
15 صفحه اولTopology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices
Due to developments in additive manufacturing, the production of piezoelectric materials with complex geometries is becoming viable and enabling the manufacturing of thicker harvesters. Therefore, in this study a piezoelectric harvesting device is modelled as a bimorph cantilever beam with a series connection and an intermediate metallic substrate using the plain strain hypothesis. On the other...
full textthe effects of time planning and task complexity on accuracy of narrative task performance
هدف اصلی این تحقیق بررسی تاثیر برنامه ریزی زمانی، هم چنین افزایش میزان پیچیدگی تکالیف در نظر گرفته شده بصورت همزمان، بر دقت و صحت و پیچیدگی عملکرد نوشتاری زبان آموزان می باشد. بدین منظور، 50 نفر از دانش آموزان دختر در رده ی سنی 16 الی 18 سال به عنوان شرکت کنندگان در این زمینه ی تحقیق در نظر گرفته شدند و به دو گروه آزمایشی و کنترل بصورت اتفاقی تقسیم شدند. اعضای گروه آزمایشی هر دو تکلیف ساده و پی...
Power optimization of a piezoelectric-based energy harvesting cantilever beam using surrogate model
Energy harvesting is a conventional method to collect the dissipated energy of a system. In this paper, we investigate the optimal location of a piezoelectric element to harvest maximum power concerning different excitation frequencies of a vibrating cantilever beam. The cantilever beam oscillates by a concentrated sinusoidal tip force, and a piezoelectric patch is integrated on the beam to gen...
full textImproving Power Density of Piezoelectric Vibration-Based Energy Scavengers
Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...
full textMy Resources
Journal title
volume 3 issue 2
pages 92- 102
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023